Користь перорального прийому колагену в дерматології

Автор(и)

  • Christian Diehl Університет Гульєльмо Марконі, Рим, Італія

DOI:

https://doi.org/10.30978/UJDVK2018-1-99

Ключові слова:

колаген, прийом всередину, поглинання, джерела, шкіра, старіння, волосся, нігті, целюліт

Анотація

Колаген є основним компонентом дерми. Він складає 75 % сухої ваги шкіри. З віком вміст колагену зменшується в шкірі через зменшення продукування його фібробластами і більш високою швидкістю обміну речовин. Це призводить до загальних ознак старіння шкіри, тобто до зниження еластичності шкіри, появи тонких ліній і зморщок. Таким чином, існує потреба в додатковому колагені в шкіру. Це неможливо зробити за допомогою (місцевого нанесення) кремів, оскільки розмір молекули (колагену) не дозволяє їй абсорбуватися через шкіру. Навпаки, пероральні гідролізати колагену легко засвоюються кишечником і досягають шкіри в достатній кількості, де вони залишаються протягом певного часу. Багато досліджень, розглянутих у цій статті, показують переваги перорального прийому гідроліту колагену не тільки для шкіри, а й для нігтів, росту волосся і навіть при целюліті.

Біографія автора

Christian Diehl, Університет Гульєльмо Марконі, Рим

Кристіан Діл

Посилання

Gelse K, Pöschl E, Aigner T. Collagens-structure, function, and biosynthesis. Advanced Drug Delivery Rev. 2003;55:1531-1546

Hofmann H, Fietzek PP, Kuhn K. The role of polar and hydrophobic interactions for the molecular packing of type I collagen: a three-dimensional evaluation of the amino acid sequence. J Mol Biol. 1978;125:137-165.

Fraser RD, MacRae TP, Suzuki E. Chain conformation in the collagen molecule. J Mol Biol. 1979;129:463-481.

Burgeson RE. Genetic heterogeneity of collagen. J Invest Dermatol. 1982;79:25s

Kadler KE, et al. Collagen fibril formation. Biochem J. 1996;316:1

Fleischmajer R, et al. Type I and type III collagen interactions during fibrillogenesis. Ann NY Acad Sci. 1990;580:161.

Uitto J, Fazio MJ, Olsen DR. Molecular mechanisms of cutaneous aging. Age-associated connective tissue alterations in the dermis. J Am Acad Dermatol. 1989;21(3 Pt 2):614-622.

Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006;168(6):1861-1868.

Furth JJ. The steady-state levels of type I collagen mRNA are reduced in senescent fibroblasts. J Gerontol. 1991;46(3):B122-124.

Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261(9):4337-4345.

Raghow R, Postlethwaite AE, Keski-Oja J, Moses HL, Kang AH. Transforming growth factor-beta increases steady state levels of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts. J Clin Invest. 1987;79(4):1285-1288.

Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M, Bottinger EP. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev. 2000;14(2):187-197.

Brown JD, DiChiara MR, Anderson KR, Gimbrone MA, Jr., Topper JN. MEKK-1, a component of the stress (stressactivated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells. J Biol Chem. 1999;274(13):8797-8805.

Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171-179.

Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, Grotendorst GR. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J. 1999;13(13):1774-1786.

Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem. 2001;276(14):10594-10601.

Gore-Hyer E, Shegogue D, Markiewicz M, Lo S, Hazen-Martin D, Greene EL, Grotendorst G, Trojanowska M. TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol. 2002;283(4): F707-716.

Quan T, Shao Y, He T, Voorhees JJ, Fisher GJ. Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol. 2010;130(2):415-424.

Hwang KA, Yi BR, Choi KC. Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations. Lab Anim Res. 2011:27(1):1-8.

Fisher GJ, Datta S, Wang Z, Li XY, Quan T, Chung JH, Kang S, Voorhees JJ. c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J Clin Invest. 2000;106(5):663-670.

Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 2004;165(3):741-751.

Quan T, He T, Shao Y, Lin L, Kang S, Voorhees JJ, Fisher GJ. Elevated cysteine-rich 61 mediates aberrant collagen homeostasis in chronologically aged and photoaged human skin. Am J Pathol. 2006;169(2):482-490.

Grinnell F. Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 2000;10(9):362-365.

Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 2003;13(5):264-269.

Grinnell F, Zhu M, Carlson MA, Abrams JM. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res. 1999;248(2):608-619.

Varani J, Schuger L, Dame MK, Leonard C, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ. Reduced fibroblast interaction with intact collagen as a mechanism for depressed collagen synthesis in photodamaged skin. J Invest Dermatol. 2004;122(6):1471-1479.

Ohara H, Matsumoto H, Ito K, Iwai K, Sato K. Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatine hydrolysates from different sources. J Agric Food Chem. 2007;55(4):1532-1536.

Oesser S, Adam M, Babel W, Seifert J. Oral administration of 14C labelled gelatine hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). J Nutr. 1999;129(10):1891-1895.

Ichikawa S; Morifuji M; Ohara H et al. Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatine hydrolysate. Int J Food Sci Nutr. 2010, 61, 52-60.

Kawaguchi T; Nanbu PN; Kurokawa, M., Distribution of prolylhydroxyproline and its metabolites after oral administration in rats. Biol Pharm Bull. 2012, 35, 422-427.

Wang L; Wang Q; Liang Q, et al. Determination of bioavailability and identification of collagen peptide in blood after oral ingestion of gelatine. J Sci Food Agric. 2015, 95, 2712-2717.

Hiroki Ohara SI. Improvement of Extracellular Matrix(ECM) in the Skin by Oral Ingestion of Collagen Hydrolysate. Foods & Food Ingredients J. Jpn. 2014, 219, 216-223.

Watanabe-Kamiyama M, Shimizu M, Kamiyama S et al. Absorption and effectiveness of orally administered low molecular weight collagen hydrolysate in rats. J Agric Food Chem. 2010 Jan 27;58(2):835-41.

Daneault A, Coxam V, Wittrant Y. Biological Effect of Hydrolyzed Collagen on Bone Metabolism, Critical Reviews in Food Science and Nutrition. 2015. doi: 10.1080/10408398.2015.1038377.

Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci USA. 1978;75(2):871-875.

Ohara H, Ichikawa S, Matsumoto H, et al. Collagen-derived dipeptide, proline-hydroxyproline, stimulates cell proliferation and hyaluronic acid synthesis in cultured human dermal fibroblasts. J Dermatol. 2010;37(4):330-8.

Zague V, de Freitas V, da Costa Rosa M, et al. Collagen hydrolysate intake increases skin collagen expression and suppresses matrix metalloproteinase 2 activity. J Med Food. 2011;14(6):618-24.

Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca J, et al. Fish gelatine: a renewable material for the development of active biodegradable films. Trends in Food Science and Technology, 2009;20:3-16.

Gómez-Guillén MC, Giménez B, López-Caballero ME, et al. Functional and bioactive properties of collagen and gelatine from alternative sources: A review. Food hydrocolloids. 2011;25:1813-1827.

Alemán A., Martinez-Alvarez O. Marine collagen as a source of bioactive molecules. A review. Nat Prod J. 2013;3(2):105-114.

Sakaguchi, M, Toda, M, Ebihara Tet, al. IgE antibody to fish gelatine (type I collagen) in patients with fish allergy. J Allergy Clin Immunol. 2000;106:579-584.

Shigemura Y, Iwai K, Morimatsu F, et al. Effect of Prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J Agric Food Chem. 2009;57(2):444-9.

Chen RH, Hsu CN, Chung MY, et al. Effect of different concentrations of collagen, ceramides, n-acetyl glucosamine, or their mixture on enhancing the proliferation of keratinocytes, fibroblasts and the secretion of collagen and/or the expression of mRNA of type i collagen. J Food Drug Anal. 2008;16(1):66-74.

Asserin J, Lati E, Shioya T, et al. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J Cosmet Dermatol. 2015;14(4):291-301.

Matsuda N, Koyama Y, Hosaka Y, et al. Effects of ingestion of collagen peptide on collagen fibrils and glycosaminoglycans in the dermis. J Nutr Sci Vitaminol (Tokyo). 2006;52(3):211-5.

Shibuya S, Ozawa Y, Toda T, et al. Collagen peptide and vitamin C additively attenuate age-related skin atrophy in Sod1-deficient mice. Biosci Biotech Biochem. 2014;78:1212-20.

Tanaka M, Koyama Y, Nomura Y. Effects of collagen peptide ingestion on UV-B-induced skin damage. Biosci Biotechnol Biochem. 2009;73(4):930-2.

Zhang Z, Wang J, Ding Y, et al. Oral administration of marine collagen peptides from Chum Salmon skin enhances cutaneous wound healing and angiogenesis in rats. J Sci Food Agric. 2011;91(12):2173-9.

Liang J, Pei X, Zhang Z, at al. The protective effects of long-term oral administration of marine collagen hydrolysate from chum salmon on collagen matrix homeostasis in the chronological aged skin of Sprague-Dawley male rats. J Food Sci. 2010;75(8):230-8.

Zague V, de Freitas V, da Costa Rosa M, et al. Collagen hydrolysate intake increases skin collagen expression and suppresses matrix metalloproteinase 2 activity. J Med Food. 2011;14(6):618-24.

Sumida E, Hirota A, Kuwaba K. The effect of oral ingestion of collagen peptide on skin hydration and biochemical data of blood. J Nutr Food. 2004;7:45-52.

Matsumoto H, Ohara H, Ito K, Nakamura Y, Takahashi S. Clinical effect of fish type I collagen hydrolysate on skin properties. ITE Lett. 2006;(7):386-90.

Ohara H, Ito K, Iida H, Matsumoto H. Improvement in the moisture content of the stratum corneum following 4 weeks of collagen hydrolysate ingestion. Nippon Shokuhin Kogaku Kaishi. 2009;56:137-45.

Koyama Y. Effect of collagen peptide on the skin. Shokuhinto Kaihatsu. 2009;44:10-2.

Proksch E, Segger D, Degwert J, et al. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: a double-blind, placebo-controlled study. Skin Pharmacol Physiol. 2014;27(1):47-55.

Schwartz SR, Park J. Ingestion of BioCell Collagen((R)), a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs. Clin Interv Aging. 2012;7:267-73.

Beguin A. A novel micronutrient supplement in skin aging: a randomized placebo-controlled double-blind study. J Cosmet Dermatol. 2005;4(4):277-84.

Choi SY, Ko EJ, Lee YH, et al. Effects of collagen tripeptide supplement on skin properties: A prospective, randomized, controlled study. J Cosmet Laser Ther. 2014;16(3):132-7.

Borumand M, Sibilla S. Effects of a nutritional supplement containing collagen peptides on skin elasticity, hydration and wrinkles. J Med Nutr Nutraceut. 2015;4:47-53

Duteil L, Queille-Roussel C, Maubert Y et al. Specific natural bioactive type-1 collagen peptides oral intake reverse skin aging signs in mature women. J Aging Res Clin Practice. 2016;5(2):84-92.

Tyson TT. The effect of gelatin on fragile finger nails. J Invest Dermatol. 1950;14:323-325.

McGavack T. H. Antibiotic Med. & Clin // Therapy.— 1957, IV.

Rosenberg S., Oster K., Kallos A., Burrough W. Further studies in the use of gelatin in the treatment of brittle nails. AMA Arch Dermatol. 1957;76(3):330-335.

Rosenberg S, Oster K. Gelatin in the treatment of brittle nails. Conn State Med J. 1955;19(3):171-179.

Schwimmear M, Mulinos MG. Antibiotic Med. & Clin // Therapy.— 1957;4:403.

Derzavis JL, Mulinos MG. The brittle nail. Its treatment and prevention with gelatin. Med Ann Dis Columbia. 1961;30:133-137.

Hexsel D, Zague V, Schunck M, et al. Oral supplementation with specific bioactive collagen peptides improves nail growth and reduces symptoms of brittle nails. J Cosmet Dermatol. 2017;1-7.

Scala J, Hollies NRS, Sucher P. Effect of daily gelatine ingestion on human scalp hair. Nutrition Reports International. 1976;13(6):579-592.

Schunck M, Zague V, Oesser S. Dietary Supplementation with Specific Collagen Peptides Has a Body Mass Index-Dependent Beneficial Effect on Cellulite Morphology. J Med Food. 18 (12)2015, 1340-1348.

##submission.downloads##

Номер

Розділ

Огляди